Using Influence to Understand Complex Systems

Adam Oliner and Alex Aiken Department of Computer Science Stanford University

A Typical System

- Complex interactions (loops, shared resources, etc.)
- Noisy and incomplete measurements

Goal and Approach

Infer which components and interactions were involved with the problem.

- We use **influence** to perform this inference
 - Statistical correlation that captures implicit interactions
 - Three steps to compute influence:
 (i) identify anomalies
 (ii) correlate in time/space
 (iii) infer influence

Time

Delay

(i) Anomaly Signal

- Surprise over time: $\Lambda_j(t)$
- Component model
 - Compare heterogeneous components
 - Synthesize hypothetical behaviors

(ii) Cross-Correlation

(iii) Influences

- Encode as a Structure-of-Influence Graph (SIG)
 - Various directionality
 - Loops and cliques
 - Time-varying
- Captures implicit interactions
- Well-defined despite noisy or incomplete data

Stanley's Swerve Bug

- Won 2005 DARPA Grand Challenge
- Tough bug:
 - Implicit timing dependency
 - Nondeterministic
 - Two month search
- 17 Swerving Incidents

Isolating the Bug

- Model components using timing $\Lambda(t) = \sum_{k=1}^{\infty} R(t,k) \log_2 \frac{R(t,k)}{H(k)}$
- Specify bug as time interval
- Build a SIG for Stanley

Recent Results

- Junior: modeled Stanley's successor
- **Syzygy**: community epidemic detection
- Qi: current project
 - Query language
 - Supercomputers [DSN 07] and clusters
 - Nodeinfo algorithm [ICDM 08]
- We are always looking for data!

