Pricing Strategies for Viral Marketing on Social Networks

David Arthur ${ }^{1}$, Rajeev Motwani ${ }^{1}$, Aneesh Sharma ${ }^{2}$, Ying Xu ${ }^{1}$
${ }^{1}$ Department of Computer Science, Stanford University
${ }^{2}$ Institute for Computational and Mathematical Engineering, Stanford University

Motivation

Social Network Monetization

Current monetization model

- Advertising
- Leaves huge gap between potential and current revenue - Facebook:
- 2007 valuation - $\$ 15$ billion
- 2008 revenue (estimated) - \$300 million
- Proposed scheme
- Sell products through personal recommendations
- Incentivize users to participate using cashback
- Leverages network structure through trust on friends!
Viral Marketing
- Model
- Each new buyer:
- recommends the product to her friends
- is promised a cashback for each friend that purchases the
product
- Seller chooses price for each recommendation
- Each receiver:
- buys the product with probability as a function of price
- is more likely to buy a product if more friends recommend it

Results

Problem Objective

- Find seller strategies that optimize expected revenue
- Seller strategy - choose prices for potential buyers
- Why expected? - people buy probabilistically
- Assume that we start with a single initial buyer (seed)

Seller Strategies

- Two types of strategies are possible:
- Adaptive: choice of price for a receiver depends on history of
choices
- Non-adaptive: prices are fixed before the process even starts!
- Theorem: Finding optimal non-adaptive seller strategies is NP-hard.
- Adaptive strategies can be strictly better, but computational hardness unknown

Algorithm

- Max-Leaf strategy
- Find the Maximum Leaf Spanning Tree for the network, rooted at seed
- Give the product to the interior nodes for free
- Charge some (optimal) price from the leaves

Conclusions

[^0]
Theoretical Guarantee

- Theorem:

E[revenue of Max-Leaf] $\geq c \times E[r e v e n u e ~ o f ~ o p t i m a l ~ s t r a t e g y] ~$
For some positive constant $c<1$, where c depends on the probability model. This guarantee holds for very general probability functions.

Proof Sketch

1. Reduce social network to a graph with minimum degree 3 - Need to ensure revenue from degree 1 and 2 nodes is constan
2. Find a max-leaf spanning tree on this reduced graph

- This graph has a linear number of leaves

3. Optimal strategy can have at most linear revenue

Simulation on YouTube graph

- Comparison with random choice of prices
- Additional enhancement - locally improving pricing decisions

Open Questions

- Incorporating cost of sending recommendations (spamming friends)
-What if buyers are non-myopic?
- Can we implement this on Facebook/Orkut?

[^0]: - Adaptive strategies do not offer a big advantage
 - Simple influence-and-exploit non-adaptive strategies work well
 - Trying to improve solution through local search may be beneficial in practice

