
Linux kernel developer
responses to

static analysis
bug reports

Philip J. Guo

Computer Systems Laboratory

Advisor: Prof. Dawson Engler
Computer Forum Poster Session

April 15, 2009



Objectives

Learn how programmers
use static code analysis
tools and suggest ways to
make these tools more
effective



Methodology

- Quantitative
- 2,125 bug reports in Linux kernel

from Coverity static code analysis tool

- Source control revision history (GIT)

- Qualitative
- Email questionnaire

- Bug database and mailing list messages



Which reports are more
likely to be triaged?

Reports from certain bug checkers

Reports in younger files

Reports in smaller files

Rank reports by
likelihood of triaging



Bug checker types

Fewer false positives, more triaged

More critical bugs, more triaged

Easier to diagnose, more triaged



File age and size
Younger files more
actively maintained

Smaller files have
less complex code



Triage quickly or forget

Percent of bugs fixed, of those triaged
within and outside given time periods

Developers first tackle
easiest bugs

Useful to continuously
run tools and present
fresh results to developers



Quick bug fixes harmful?

Bugs found by static analysis usually easy to
fix, but might indicate deeper problems:

“Considering the very important flow of
patches you are sending these days, I have to
admit I am quite suspicious that you don't
really investigate all issues individually as you
should, but merely want to fix as many bugs
as possible in a short amount of time. This is
not, IMVHO [in my very humble opinion], what
needs to be done.” - from developer mailing list



Triaging subsequent
reports in the same file

(only counting files with reports in at least 2 scans)

Probability of triaging reports in a file during one scan,
given what happened to reports in previous week’s scan



Static analysis bugs vs.
user-reported bugs

Spearman’s rank correlations

Static analysis bug: null pointer dereference on
Line 36 of sound_driver.c

User-reported bug: Sound Blaster card emits
weird tone when playing demo.wav

Static analysis can flag
dubious code that is
more likely to have
user-reported bugs



Static analysis bugs
predict user-reported bugs

(counting all .c files alive during initial scan)



Making static analysis
tools more effective

- Rank and filter reports by
likelihood of being triaged

- Encourage finding deeper root
causes rather than quick fixes

- Direct attentions to code more
likely to have user-reported bugs


