
Closing the ASIC Gap

We plan to close this gap by addressing inefficiencies in architecture,
using optimized circuits, and utilizing a productive programming system
to generate an efficient embedded solution that scales from handsets to

base stations.

Conventional

DSP or
RISC core

ELM

Std Cell

Efficient

Architecture
10-30x

Optimized

Circuits & Layout
3-6x

ASIC

Std Cell

Specialize

1-5x

ELM

Custom

Programmable

Processor with
Efficiency of

ASIC

ASIC

EEC Custom
More efficient

ASICs

Current Microprocessors and DSPs are
30-100x less efficient than ASICs

in ops/Watt or ops/mm2.

Application-specialized
ELM cores can be
extracted to implement
more efficient ASIC
designs, with faster
design times, for lower
cost.

• <10MOPS/mW

• ~ 0.1GOPS/$

• <10GOPS peak

• 1M$ programming cost

• Programmable

Microprocessors/DSP
• 50-200 MOPS/mW

• 2-10 GOPS/$

• Up to 1000GOPS peak

• 15M-25M$ design cost

• Fixed function

ASIC/ASSP

The Problem
Embedded applications are becoming more
complicated and computational demanding.

• ASICs are too inflexible
• Processors are too inefficient

Algorithms and standards are very complex and change rapidly.
ASIC development takes too long and is too costly.

Programmable processors and DSPs spend most of their energy
moving data and instructions, instead of on computation. Their
serial execution model and generic instruction set poorly exploit
the parallelism in embedded applications.

A new efficient embedded architecture is needed to address this
divergence. It must scale from personal handsets (GOPS) to
cellular base stations (TOPS) while providing high energy
efficiency.

ELM: Efficient Low-power Microprocessor
Efficient programmable fabrics for embedded applications

Professor William J. Dally (PI)
Curt Harting

James Balfour
Jongsoo Park

James Chen
David Sheffield Concurrent VLSI

Architecture Group
Computer Systems Lab

Stanford University
Electrical Engineering

We have compared a single Ensemble Processor (EP) to the
LEON2 SPARC v8 embedded RISC core, demonstrating a 30x
efficiency improvement. We also found that ELM efficiency for
embedded kernels comes within 2-5x of an ASIC
implementation.

Recently, we have focused on refining and analyzing specific
aspects of ELM. Studies have included finding the best
configurations for the instruction and data registers, the benefits
of custom circuits, and how compiler algorithms impact energy
use.

Evaluation

Architecture

Data Supply Instruction SupplyDatapathSystem Level

Energy of Operations

•Small in-order Ensemble Processors (EPs)

•Four EPs and small SRAM array form an Ensemble

•Chip is comprised of distributed memory tiles and
Ensembles

•Intra-Ensemble communication occurs either via the
Ensemble memory or message registers

•Inter-Ensemble communication is most efficiently done
via software controlled data streams across the
interconnection fabric

•Streaming operations allow for latency hiding and code
size reduction

•Allowing for software control both guarantees real time
constraints and minimizes wasted data movement energy

Compiler CircuitsProgramming System

Future work includes
refinement of the global
architecture, programming
system, and the fabrication of
a chip.

•RISC processors load data from a large, tagged reactive
cache into a large register file

•ELM contains a distributed register hierarchy comprised
of small (4-8 entry) SRAM arrays

• These arrays are physically and temporally near the
functional units

•Backed by the tag-less Ensemble memory

•RISC processors fetch instructions out of a tagged,
reactive L1 loop cache

•ELM executes out of a 64 entry tag-less, software
controlled register file (IRF)

•Software has specialized fetch instruction to bring code
blocks into the IRF

•Each EP has two pipelines: address and
arithmetic

•The address pipeline is responsible for
issuing loads and stores, as well as
performing basic arithmetic operations

•The arithmetic pipeline is used to perform
operations on program data. It includes a
shifter, multiplier, adder, and zero’s counter

•Each of these pipelines have a 4 entry SRAM
(ARF/ORF, respectively) that can be accessed
in the execute cycle

•Bypassing is explicitly managed by software

•Mechanisms for auto-updating counters to
reduce loop overheads

Giving algorithm designers a productive implementation flow

•One of the novel primary tasks of the compiler is to
schedule instructions for the IRFs.

•Fetch hoisting and minimizing common path code size
are examples of compiler optimizations that limit the
amount of accesses to higher Ensemble memory

•The graph below demonstrates how our IRFs (E)
consume less energy when compared to an I-Cache(B),
fully associative loop cache (A), direct mapped loop
cache (D). The loop caches have the same capacity as
the IRF.

Managing the memory hierarchy to reduce energy Augmenting the standard cell flow to further efficiency gains

•Programmers write in a high-level language, providing
hints about kernel boundaries and streaming operations

•An ELM program parses this program into kernels based
on the programmer’s division of tasks

•This program can split kernels, merge kernels, and setup
buffers to find a code mapping onto the compute fabric
that meets the programmer’s real time constraints

•The ELM programming system works with the
underlying compiler to ensure that kernels can be
executed in the allotted amount of time

•It also works with the programmer, providing feedback
on the feasibility of partitioning schemes

•A sample program representation can be seen below

•In ELM’s standard cell design, 25-30% of the
energy is lost in wires

•Custom circuits can replace long wires with low
swing variants, where signaling is done
differentially between 0 and 200mV

•The graph at right shows the energy decrease of
a transmitter and receiver for different voltages
and wire lengths

•The compiler schedules code for the distributed,
hierarchical memory

•It addresses a phase ordering problem between
instruction scheduling and register allocation by
scheduling, allocating, then rescheduling instructions

•Using auto-update features of the architecture, the
compiler is also able to issue zero overhead loops

@L_BB3: nop, ld vr1 [ar1+@samples];

nop, loop.clear pr1 @L_BB3 31;

nop, ld vr0 [ar0+@coeffs];

@L_BB4: movi pr2 15, movi pr0 31;

nop, nop;

@L_BB6: mov sr0 zr0, nop;

@L_BB8: mac sr0 vr0 vr1 sr0, loop.clear pr2 @L_BB8 15;

mac sr0 vr0 vr1 sr0, nop;

@L_BB9: nop, recv vr1 mr0;

mov zr0 sr0, loop.clear pr0 @L_BB6 31;

mov zr0 vr1, send mr3 tr0;

•By designing our own memories, we able to make design
decisions based on our needs (small, fast arrays)

•By viewing each cell as a small sense amplifier, writes on
the cell use a small voltage on the bitlines (3x total savings
in a 64x32 array)

•Our 2+2 ported register file, saves about 4x (8x32 entry)
the energy per access than a system of flip-flops

